Final Programming Project Assessment (400 Points toward Course Grade)

Instructions: The following programming problem can be solved by a program that uses three basic tasks-Input Data,
Process Data, and Output Results. To process the data, use file, looping, array, decision, accumulating, counting, find
min/max and sorting techniques. First, create an MS Word document containing a hierarchy chart and a data flow
diagram to organize your program modules. Second, create a pseudocode program using Notepad++ to solve this
problem. Third, create the program with RAPTOR. You MUST use Modular Programming techniques by using Sub
Modules (Sub Charts in RAPTOR) in your program. Your "main™ module should not be very large.

Problem Statement

Ledger's Furniture Store has 10 salespeople. Ledger's wants to produce a combined monthly sales report for all
salespeople. Ledger's wants you to write a program that will allow them to enter data in any order, save the unsorted data
to a file, and then produce a file in alphabetical order by last name of the salespeople. The unsorted output file should be
named "sales_unsorted.txt" and the sorted file should be named "sales_sorted.txt".

Your unsorted file output should include:
o Alist of the salespeople’s names and the monthly sales for each of them.
Your sorted file output should include:
o Alist of the salespeople’s name and the monthly sales for each of them.
o At the bottom of the report, list the following:
o The total combined sales for all salespeople.
o The average sales for all salespeople.
o The salesperson with the lowest sales for the month.
o The salesperson with the highest sales for the month.
You must submit the unsorted and sorted files with your RAPTOR program to show that your program ran correctly.

Here is your sample test data to use with your program. This is to be typed in as user input.

Salesperson Monthly Sales
Joan $ 1525
Bob $ 1935
Lisa $ 2550
Tina $ 1745
Corey $ 3025
Chummily $ 1420
Rick $ 4560
Nancy $ 2645
Holly $ 1489
Frank $ 4450

Do not worry about the formatting of your output files since RAPTOR does not support formatting controls.

The unsorted file should look similar to this: The sorted file should look similar to this:
Joan Sales: $ 1525 Bob Sales: $ 1935
Bob Sales: $ 1935 Chummily Sales: $ 1420
Lisa Sales: $ 2550 Corey Sales: $ 3025
Tina Sales: $ 1745 Frank Sales: $ 4450
Corey Sales: $ 3025 Holly Sales: $ 1489
Chummily Sales: $ 1420 Joan Sales: $ 1525
Rick Sales: $ 4560 Lisa Sales: $ 2550
Nancy Sales: $ 2645 Nancy Sales: $ 2645
Holly Sales: $ 1489 Rick Sales: $ 4560
Frank Sales: $ 4450 Tina Sales: $ 1745

Total Sales: $ XXXXX

Average Sales: $ XXXX
Salesperson with Lowest Sales: name
Salesperson with Highest Sales: name

Other Requirements:

Documentation: Use the "Comments" feature to document each symbol in the flowchart. You do this by right-
clicking the symbol and selecting "Comment.” Be sure to identify the data type of each variable used in your
comments. Be sure to explain what each formula and function does. Be sure to explain what each of the other
symbols in the flowchart does in a comment.

Test and debug your Program: Use the sample input data, run the program, then check your answers with a
calculator or Excel. If something did not match up, then fix your program.

Program must execute and produce correct output.

Read this page again to be sure you covered all requirements.

See the Programming Project Rubric for grading principles.

Extra Credit: Use Object-Oriented Programming Techniques learned in chapter 11.

Submission Instructions:

You will submit 5 files for this project. You must submit the Hierarchy Chart and Data Flow Diagram in a
MS Word or PDF file (both in same document), a Pseudocode Program in a Notepad++ file, and a Flowchart
(from RAPTOR) file. Your RAPTOR file will be the .rap file created when you save your project.

Name the RAPTOR file (replacing LastName and Firstinitial with YOUR name):
LastName_Firstinitial_Programl.rap (example: Smith_J Program_3.rap).

You must also submit the unsorted and sorted files (sales_unsorted.txt and sales_sorted.txt) to show that your
program ran correctly.

Attach your files individually (no zip files) to your assignment submission upload. If you find that you made an
error and want to resubmit before the due date, you may do so. However, only the LAST files uploaded by the
due date will be graded.

Delivery

Coding
Standards

Documentation

Runtime

Efficiency

Programming Project Rubric

Unsatisfactory

Completed less
than 70% of the
requirements.

Not delivered on
time or not in
correct format
(disk, email, etc.)

Satisfactory

Completed
between 70-80% of
the requirements.

Delivered on time,
and in correct
format (disk, email,
etc.)

Good

Completed between
80-90% of the
requirements.

Delivered on time,
and in correct format
(disk, email, etc.)

Excellent

Completed between
90-100% of the
requirements.

Delivered on time,
and in correct format
(disk, email, etc.)

No name, date, or
assignment title
included

Poor use of white
space (indentation,
blank lines).

Disorganized and
messy

Includes name,
date, and
assignment title.

White space
makes program
fairly easy to read.

Organized work.

Good use of

Includes name, date,
and assignment title.

Good use of white
space.

Organized work.

Good use of
variables (no global
variables,

Includes name, date,
and assignment title.

Excellent use of
white space.

Creatively organized
work.

Excellent use of
variables (no global

e Poor use of variables (few unambiguous variables,
variables (many global variables, naming) unambiguous
global variables, unambiguous naming).
ambiguous naming).
naming).

e No documentation Basic e Clearly documented Clearly and
included. documentation has including effectively

been completed descriptions of all documented
including variables. including
descriptions of all descriptions of all
variables. variables.

Purpose is noted
for each function.

Specific purpose is
noted for each
function and control
structure.

Specific purpose is
noted for each
function, control
structure, input
requirements, and
output results.

Does not execute
due to errors.

User prompts are
misleading or non-
existent.

No testing has
been completed.

Executes without
errors.

User prompts
contain little
information, poor
design.

Some testing has
been completed.

Executes without
errors.

User prompts are
understandable,
minimum use of
symbols or spacing
in output.

Thorough testing
has been completed

Executes without
errors excellent user
prompts, good use of
symbols, spacing in
output.

Thorough and
organized testing has
been completed and
output from test cases
is included.

A difficult and

inefficient solution.

A logical solution
that is easy to
follow but it is not
the most efficient.

Solution is efficient
and easy to follow
(i.e. no confusing
tricks).

Solution is efficient,
easy to understand,
and maintain.

	Final Programming Project Assessment Instructions
	Project Rubric

